α2-Macroglobulin Can Crosslink Multiple Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) Molecules and May Facilitate Adhesion of Parasitized Erythrocytes
نویسندگان
چکیده
Rosetting, the adhesion of Plasmodium falciparum-infected erythrocytes to uninfected erythrocytes, involves clonal variants of the parasite protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) and soluble serum factors. While rosetting is a well-known phenotypic marker of parasites associated with severe malaria, the reason for this association remains unclear, as do the molecular details of the interaction between the infected erythrocyte (IE) and the adhering erythrocytes. Here, we identify for the first time a single serum factor, the abundant serum protease inhibitor α2-macroglobulin (α2M), which is both required and sufficient for rosetting mediated by the PfEMP1 protein HB3VAR06 and some other rosette-mediating PfEMP1 proteins. We map the α2M binding site to the C terminal end of HB3VAR06, and demonstrate that α2M can bind at least four HB3VAR06 proteins, plausibly augmenting their combined avidity for host receptors. IgM has previously been identified as a rosette-facilitating soluble factor that acts in a similar way, but it cannot induce rosetting on its own. This is in contrast to α2M and probably due to the more limited cross-linking potential of IgM. Nevertheless, we show that IgM works synergistically with α2M and markedly lowers the concentration of α2M required for rosetting. Finally, HB3VAR06+ IEs share the capacity to bind α2M with subsets of genotypically distinct P. falciparum isolates forming rosettes in vitro and of patient parasite isolates ex vivo. Together, our results are evidence that P. falciparum parasites exploit α2M (and IgM) to expand the repertoire of host receptors available for PfEMP1-mediated IE adhesion, such as the erythrocyte carbohydrate moieties that lead to formation of rosettes. It is likely that this mechanism also affects IE adhesion to receptors on vascular endothelium. The study opens opportunities for broad-ranging immunological interventions targeting the α2M--(and IgM-) binding domains of PfEMP1, which would be independent of the host receptor specificity of clinically important PfEMP1 antigens.
منابع مشابه
Discovery of a novel and conserved Plasmodium falciparum exported protein that is important for adhesion of PfEMP1 at the surface of infected erythrocytes
Plasmodium falciparum virulence is linked to its ability to sequester in post-capillary venules in the human host. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is the main variant surface antigen implicated in this process. Complete loss of parasite adhesion is linked to a large subtelomeric deletion on chromosome 9 in a number of laboratory strains such as D10 and T9-96. Simil...
متن کاملCD36 peptides that block cytoadherence define the CD36 binding region for Plasmodium falciparum-infected erythrocytes.
Mature Plasmodium falciparum parasitized erythrocytes (PE) sequester from the circulation by adhering to microvascular endothelial cells. PE sequestration contributes directly to the virulence and severe pathology of falciparum malaria. The scavenger receptor, CD36, is a major host receptor for PE adherence. PE adhesion to CD36 is mediated by the malarial variant antigen, P. falciparum erythroc...
متن کاملPlasmodium falciparum Plasmodium helical interspersed subtelomeric proteins contribute to cytoadherence and anchor P. falciparum erythrocyte membrane protein 1 to the host cell cytoskeleton
Adherence of Plasmodium falciparum-infected erythrocytes to host endothelium is conferred through the parasite-derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface is anchored to the cytoskeleton, and the Plasmodium helical interspersed subtelomeric (PHIST) gene fam...
متن کاملRED CELLS CD 36 Peptides That Block Cytoadherence Define the CD 36 Binding Region for Plasmodium falciparum - Infected Erythrocytes
Mature Plasmodium falciparum parasitized erythrocytes (PE) sequester from the circulation by adhering to microvascular endothelial cells. PE sequestration contributes directly to the virulence and severe pathology of falciparum malaria. The scavenger receptor, CD36, is a major host receptor for PE adherence. PE adhesion to CD36 is mediated by the malarial variant antigen, P. falciparum erythroc...
متن کاملCloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes
Plasmodium falciparum-infected human erythrocytes evade host immunity by expression of a cell-surface variant antigen and receptors for adherence to endothelial cells. These properties have been ascribed to P. falciparum erythrocyte membrane protein 1 (PfEMP1), an antigenically diverse malarial protein of 200-350 kDa on the surface of parasitized erythrocytes (PEs). We describe the cloning of t...
متن کامل